#10. 回文平方数
回文平方数
Problem Description
Palindromes are numbers that read the same forwards as backwards.
回文数是指从左往右读与从右往左读都一样的数字。
The number 12321 is a typical palindrome.
12321就是一个回文数。
Given a number base B (2 <= B <= 20 base 10), print all the integers N (1 <= N <= 300 base 10) such that the square of N is palindromic when expressed in base B; also print the value of that palindromic square. Use the letters 'A', 'B', and so on to represent the digits 10, 11, and so on.
给出一个正整数B表示进制。请说出大于等于1并且小于等于300的所有整数的平方的B进制表示是回文的。高进制中10以上的值用大写字母'A','B'....表示。
Print both the number and its square in base B.
Input Format
A single line with B, the base (specified in base 10).
Output Format
Lines with two integers represented in base B. The first integer is the number whose square is palindromic; the second integer is the square itself. NOTE WELL THAT BOTH INTEGERS ARE IN BASE B!
一行两个数,空格隔开。第一个数为 i , 第2个数为i的平方(必须是回文) 。注意这两个都是用B进制表示。
101 1
2 4
3 9
11 121
22 484
26 676
101 10201
111 12321
121 14641
202 40804
212 44944
264 69696